Search results for "approximate bayesian computation"
showing 10 items of 11 documents
Whole-Genome Re-Sequencing Data to Infer Historical Demography and Speciation Processes in Land Snails: the Study of Two Candidula Sister Species
2021
Despite the global biodiversity of terrestrial gastropods and their ecological and economic importance, the genomic basis of ecological adaptation and speciation in land snail taxa is still largely unknown. Here, we combined whole-genome re-sequencing with population genomics to evaluate the historical demography and the speciation process of two closely related species of land snails from western Europe, Candidula unifasciata and C. rugosiuscula. Historical demographic analysis indicated fluctuations in the size of ancestral populations, probably driven by Pleistocene climatic fluctuations. Although the current population distributions of both species do not overlap, our approximate Bayesi…
Hydrological post-processing based on approximate Bayesian computation (ABC)
2019
[EN] This study introduces a method to quantify the conditional predictive uncertainty in hydrological post-processing contexts when it is cumbersome to calculate the likelihood (intractable likelihood). Sometimes, it can be difficult to calculate the likelihood itself in hydrological modelling, specially working with complex models or with ungauged catchments. Therefore, we propose the ABC post-processor that exchanges the requirement of calculating the likelihood function by the use of some sufficient summary statistics and synthetic datasets. The aim is to show that the conditional predictive distribution is qualitatively similar produced by the exact predictive (MCMC post-processor) or …
Genetic structure and differentiation from early bronze age in the mediterranean island of sicily: Insights from ancient mitochondrial genomes
2022
Sicily is one of the main islands of the Mediterranean Sea, and it is characterized by a variety of archaeological records, material culture and traditions, reflecting the history of migrations and populations’ interaction since its first colonization, during the Paleolithic. These deep and complex demographic and cultural dynamics should have affected the genomic landscape of Sicily at different levels; however, the relative impact of these migrations on the genomic structure and differentiation within the island remains largely unknown. The available Sicilian modern genetic data gave a picture of the current genetic structure, but the paucity of ancient data did not allow so far to make p…
Inferring Learning Strategies from Cultural Frequency Data
2015
Social learning has been identified as one of the fundamentals of culture and therefore the understanding of why and how individuals use social information presents one of the big questions in cultural evolution. To date much of the theoretical work on social learning has been done in isolation of data. Evolutionary models often provide important insight into which social learning strategies are expected to have evolved but cannot tell us which strategies human populations actually use. In this chapter we explore how much information about the underlying learning strategies can be extracted by analysing the temporal occurrence or usage patterns of different cultural variants in a population…
Compressed Particle Methods for Expensive Models With Application in Astronomy and Remote Sensing
2021
In many inference problems, the evaluation of complex and costly models is often required. In this context, Bayesian methods have become very popular in several fields over the last years, in order to obtain parameter inversion, model selection or uncertainty quantification. Bayesian inference requires the approximation of complicated integrals involving (often costly) posterior distributions. Generally, this approximation is obtained by means of Monte Carlo (MC) methods. In order to reduce the computational cost of the corresponding technique, surrogate models (also called emulators) are often employed. Another alternative approach is the so-called Approximate Bayesian Computation (ABC) sc…
On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data
2021
AbstractBackgroundDuring the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, throug…
Modern taurine cattle descended from small number of near-eastern founders.
2012
Archaeozoological and genetic data indicate that taurine cattle were first domesticated from local wild ox (aurochs) in the Near East some 10,500 years ago. However, while modern mitochondrial DNA (mtDNA) variation indicates early Holocene founding event(s), a lack of ancient DNA data from the region of origin, variation in mutation rate estimates, and limited application of appropriate inference methodologies have resulted in uncertainty on the number of animals first domesticated. A large number would be expected if cattle domestication was a technologically straightforward and unexacting region-wide phenomenon, while a smaller number would be consistent with a more complex and challengin…
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
2020
Approximate Bayesian computation allows for inference of complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We consider an approach using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure its sufficient mixing, and post-processing the output leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators, and propose an adaptive approximate Bayesi…
Continental-scale patterns of pathogen prevalence: a case study on the corncrake
2014
Pathogen infections can represent a substantial threat to wild populations, especially those already limited in size. To determine how much variation in the pathogens observed among fragmented populations is caused by ecological factors, one needs to examine systems where host genetic diversity is consistent among the populations, thus controlling for any potentially confounding genetic effects. Here, we report geographic variation in haemosporidian infection among European populations of corncrake. This species now occurs in fragmented populations, but there is little genetic structure and equally high levels of genetic diversity among these populations. We observed a longitudinal gradient…
2021
The domestication and spreading of grapevine as well as the gene flow history had been described in many studies. We used a high-quality 7k SNP dataset of 1,038 Eurasian grape varieties with unique profiles to assess the population genetic diversity, structure, and relatedness, and to infer the most likely migration events. Comparisons of putative scenarios of gene flow throughout Europe from Caucasus helped to fit the more reliable migration routes around the Mediterranean Basin. Approximate Bayesian computation (ABC) approach made possible to provide a response to several questions so far remaining unsolved. Firstly, the assessment of genetic diversity and population structure within a we…